V-Rtifacts

Author Archive: Mnemonic

Vuzix Wrap 920 Augmented Reality Hands On

Recently I got my hands on brand new Vuzix video-see-through augmented reality HMD – Wrap 920 AR. It’s not quite a consumer product, it’s more focused on R&D in Augmented Reality field, there are small amount of information about it on the net and few people asked me for a review. Besides, I hope it will be interesting to many VR geeks on the planet, so here it comes. I want to give as much info as I can, but will try to keep this article short and don’t miss anything valuable.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
01_wrap_ar_500x375
02_wrap_ar_500x375

Editor’s note: Thanks go out to Mnemonic who put together this excellent review. While not strictly a VRtifact, future posts will draw the connection between the earliest augmented reality systems from the 80’s and 90’s and the Wrap 920 AR. Stay tuned…

Virtual Research VR-4 Adapted For Stereoscopic Augmented Reality

Virtual Research VR-4 Adapted For Stereoscopic Augmented Reality – circa 1993

Packaging

Wrap 920 AR comes in really big box in comparison to compact package of VR920. Honestly, I didn’t expect it to be so big, but it’s because of bunch of different stuff inside, all packed in different sockets cut in safety foam. You can see list of included stuff on the sign, on top of the box. I liked that each part of the package is wrapped in some packet; head-tracking module comes in small acrylic box for example. Two AR markers on plastic-base included, which is nice to check Vuzix AR demos right away.

Drivers for the HMD are digitally distributed by Vuzix via Internet, so no installation disk is included.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
03_boxes_compare_500x375
04_box_contents_500x375
05_inside_box_500x375
06_tracker_box_500x375

There is also solid travel casing included in the package, HMD with cables and VGA adapter fits there nicely:

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
07_case_1_500x375
08_case_2_500x375
09_case_3_500x375

Adapters & cables

Wrap 920AR based on Wrap series of Vuzix HMD’s, and as any other Wrap HMD it supports various video sources for input. It’s includes composite video, iPod / iPhone connection and what we interested in – regular VGA for PC connection. To use VGA or composite video source you need to choose proper “adapter”, which are actually a control boxes. All currently available adapters (VGA, composite / iPod) included in the package of Wrap AR. Vuzix recently announced Wrap HDMI adapter, so I’m pretty sure it will be compatible. There’s also DVI to VGA adapter in the package for DVI-I connection.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
10_remote_01_500x375
11_remote_02_500x375
12_remote_logo_500x375

Wrap AR HMD have two cables, one from visor system (HMD itself) with some small specific connector which goes into control box, and another one from stereoscopic camera system – regular USB. VGA control box have VGA and USB connectors. USB needed to power up screens, provide audio and head-tracking.

Assembling

Before start to work with Wrap 920AR in its full capacity we need to attach head-tracker, VGA adapter and optionally headphones. From the inside HMD have two small jack connectors for ear-plug style headphones and micro connector on the right brow for head-tracker module.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
13_wrap_ar_500x375
14_wrap_ar_500x375

Tracker connector and HMD-to-control-box connectors are very small, and looks fragile, so I would recommend assembling these with care, because they do need to put some force to plug in. But once connected, tracker (and control-box connector) securely stays in place, and don’t bother you.

Computer connection

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
15_netbook_500x375
16_to_pc_500x375

Wrap AR had straight-forward connection to my netbook and laptop, just plug in VGA and both USB cables and it’s ready. But first thing I noticed when tried to connect them to my (most powerful) stationery computer that cables are way to short!

Cables are much shorter than what was in VR920. I suppose Vuzix designed glasses to be connected to laptops, which sounds reasonable for Augmented Reality usage. Besides, in the full PDF manual (more than 100 pages!) I found mention that for stationery computers additional extension cables are need to be used.
In short – I used 3 meters VGA extension cable and two 2 meters USB cables to connect Wrap AR to my stationery PC, and in this configuration device work without any issues.

After connecting HMD, drivers were installed fluently on both systems: Windows XP 32 bit and Windows 7 64 bit, I also tried them on Windows Vista 32 bit, without any problems. HMD supports input video signal with resolution up to 1024 x 768 with 60 Hz refresh rate. It can be used both in clone and extend monitors modes like any external monitor.

Adjustments and ergonomics

Once connected to PC (and drivers are installed), buttons on the control box (adapter) provide control to the HMD adjustments menu. In the menu you can switch between few brightness and contrast presets, set your own preset, switch between stereoscopic and monoscopic modes, switch between different stereoscopic modes (side-by-side stereo pair, or various anaglyphs), swap left and right eyes in stereo mode, and adjust headphones volume.

On the back of the adapter you can find a little screw-driver, which is needed to adjust focus. Two knobs for focus adjustments you can find under rubber cover on top of the HMD. Knobs allow you to adjust between +2 to -5 diopters independently for each eye.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
17_wrap_ar_500x375
18_focus_adjustments_500x375

My Wrap AR when first unpacked and connected to PC, had both knobs set to the very left position, I believe it was -5. I have perfect vision and was completely unable to focus screens this way. But with step-by-step slight adjustments, independently for each eye I was able to set glasses to very comfortable focus, and both “eyes” give me a sharp and clean image.

Also nose-piece can be adjusted for particular nose, and all nose-piece construction can slide inwards (or backwards) into HMD. Additional (spare) nose-piece and ear-plug nozzles of different sizes also included in the package.

It is possible to adjust optics between -5 and +2 diopters, but if you happen to have worse vision, you can find that it’s hard to use HMD with glasses while head-tracker attached, so probably you will need to use contact lenses.

Personally I found Wrap AR to be pretty comfortable, HMD is easy to wear and lightweight enough.

Screens, optics and visual quality

Wrap 920 AR have two true 752 x 480 LCD color screens which are located inside visual module casings and project image down into lens/prism system. In Wrap predecessor – iWear VR920 screens were located in front of the eyes, here Vuzix decided to go with another optical design. Optics has narrow 31 degree diagonal FOV with 100% stereo overlap, pretty much the same as with VR920 (32 degree), personally I didn’t feel the difference in the image size, but of course I would prefer if FOV was bigger, at least like in old VFX-1 with 45 degree.

All surroundings from the sides and from the bottom of the screen can be clearly seen, so it doesn’t block your view. This is bad in case of Virtual Reality use, but can be good when it comes to Augmented Reality applications, because you still see and aware of your surroundings outside of the screens, and on the screens, and in the same time inside screens you can see all AR “magic”.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
19_inside_1_500x375
20_inside_2_500x375

In comparison with VR920, picture quality inside Wrap 920 is much better! Picture is perfectly clear and sharp, and looks the same in both eyes; also color reproduction is much better.

As many of you know, iWear VR920 had “child problems” with screens system – image in left eye looked a little grainier (less colors) then from the right eye. When used for long periods of time – VR920 was able to overheat, and when that happened – image quality degraded, user begin to notice “scan lines” and even in case of extreme overheat, many users noted “black dot” which appeared in corner of the screen. Those artifacts thankfully weren’t permanent, and after cooling down HMD by unplugging USB chord image became normal again.

Wrap 920 AR don’t have any of these “child problems”. Glasses stayed almost all working day plugged into my laptop and just became normally warm. Image quality doesn’t change, so it’s really good that Vuzix solved such issues! This HMD can be plugged and powered on as regular monitor as long as you wish.

Also, from the first try I thought that my Wrap AR have bigger resolution screens. What I mean is when desktop is set to 1024×768 mode normally in VR920 I wasn’t able to read any standard-sized text in Windows, in Wrap AR I can operate Windows almost normally, text isn’t perfect but it’s readable in all the menus. Perhaps its benefit of better optics, higher quality screens, and better image scaling algorithm, but fact that picture is pretty readable even in 1024 x 768.

Stereoscopy

Main stereoscopic mode of Wrap 920 AR is side-by-side stereo-pair (it can be parallel or cross-eyed, both modes supported), which is very good from developers point of view, because it’s fairly easy to implement. But, in fact, gives less resolution per-eye. So if Wrap 920 AR is working in 1024 x 768, effective pixels will be 512 x 768 per eye, each scaled to 752 x 480 screens.

Crysis2 Stereo Side By Side

Crysis2 Stereo Side By Side

Crysis 2 in native stereo-pair mode

What is good that both eyes will be perfectly synchronized, and you can give full 60 frames per second for each eye! Stereo-pair support make glasses perfectly compatible with iZ3D and TriDef Ignition stereo-drivers, besides some new games like Crysis 2, and Avatar can output stereo-pair natively.

For those who compare characteristics to VR920, it had limitation of 30 FPS per eye in stereo, because of page-flipping stereoscopy; Wrap series don’t have such limitation.

Cameras

Wrap 920 AR have two high-speed micro-cameras with 640 x 480 native resolution, which are actually capable of 60 frames per second (if your computer can handle). 60 Herz refresh rate gives really nicely smooth and almost perfect picture of the surroundings, which looks really good in stereoscopy! In Windows Wrap AR camera system recognized as two independent USB cameras.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
22_inside_3_500x375
23_photo_through_glasses_500x375

I’ve compiled small example from Vuzix SDK to check stereo cameras, and tried to make a photo to give you some impression of how it looks like. In reality picture in glasses looks really nice, and it blends good with surroundings. FOV of the cameras and screens optics FOV fit close to each other (not ideally, but close enough to give you proper illusion), which is good point for AR.

Picture quality of Wrap AR cameras not as nice as in new top-line Logitech webcam’s for example, but far better than most regular webcams can provide, and they work very fast when PC can handle it. Besides, exposition, white-balance and other stuff manually controllable from the camera drivers. They are also can be controllable from the inside of self-made software using Vuzix SDK.

Head Tracker

New Wrap 6TC head tracker besides 3 accelerometers and 3 magnetometers also includes 3 gyroscopes, which greatly improved orientation tracking when comparing it to VR920 head-tracker. It’s much less dependent on external magnetic influences, and do not require frequent re-calibrations. In fact I’ve calibrated them only once, and tracker work fine even week after, without any recalibration.

Head Tracker

VR920 AR Head Tracker

Using SDK we can receive full 6DOF information from the tracking. In this mode absolute 3DOF orientation information provided (Yaw, Pitch, Roll), along with relative 3DOF position (X, Y, Z). However Vuzix notes in current SDK that position info is in early beta and can’t be used for anything serious besides just “movement” detection. True I didn’t figured out how to use those X, Y, Z values with current driver and SDK, they seems pretty chaotic, but hopefully they will be useful in future with next drivers release.

Software

Wrap 920 AR drivers supports Windows XP, Vista and Windows 7 both in 32 and 64 bit versions.

Wrap 920 AR shipped with “maxReality” license, which is an AR plugin for 3D Studio Max (2010 and 2011). I didn’t use this software so far, because I plan to use these glasses with my own software, but maxReality have few nice demos, which can be used to check all functions of Wrap 920 AR.

I’ve captured movie examples of Vuzix “Dragon” demo, these movies are stereoscopic, so you could take a look how it actually looks like in HMD on your stereo-setup (please watch in HD).

Also Wrap AR is fully supported by Vuzix VR manager software, which provides stereoscopy and head-tracking for more than hundred of gaming titles. Even if it’s isn’t gaming HMD, nice to have this feature.

SDK

Free to use SDK with C++ examples available from Vuzix website to give programmers ability to use any feature of this HMD including head-tracker, stereoscopy, cameras, and also optical marker tracking example based on ALVAR library. SDK is well documented and examples are good to use.

Conclusion

Some of the statements in this review can be fair for other HMD’s from Wrap series (like Wrap 920) its goes to stereoscopic support and head-tracking module. Some other statements can be close too, but I can’t 100% guarantee that, because I’ve used only AR version, which is a little different even externally from other Wrap HMD’s, and also can be a little different in electronic components which used in it.

If you happen to build your own Augmented Reality software, or you make research and development in this field, and you have a budget on Wrap 920 AR, I would say go for it! It’s nice lightweight HMD which provide true stereoscopic video-see-through. It is ready to use hardware solution. I happy I bought it for my projects.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
25_comparison1_500x375
26_comparison2_500x375
Wrap 920AR besides VR920 modded with Logitech HD C310 webcam into AR glasses.

Night vision goggles of Red Army!

Suddenly, I found the information that USSR army, just before World War 2 developed electronic head-mounted infra-red night-vision goggles for tank crew! It is not exactly a virtual reality subject, but nevertheless it’s early days of electronic HMD’s in Soviet Union.

In 1993-1940 years infra-red goggles “Ship” and “Dudka” were tested by crews of BT-7 light tanks. “Ship” was developed by national optics institute and Moscow institute of glass. Device included: infra-red periscope goggles, and additional accessories for driving machinery during night.

Ship

Ship - Infra Red Night Vision Goggles

Upgraded version “Dudka” had field tests during June 1940, and after in January – February 1941. Device included: infra-red periscope goggles for tank driver, and crew commander, two infra-red beamers (by 1 Kilowatt each, 140 millimeters diameter each), control unit, separate IR signal beamer, cables and accessories for goggles.

Dudka

Dudka - Another Infra Red Night Vision System From Pre-War USSR

BT-7, light tank

BT-7, light tank

Goggles weight (without helmet-mounting) 750 gram, FOV – 24 degree, seeing distance at night – 50 meters. These devices approved all specifications of Red Army, but because of bulky construction design, usability issues, especially during winter-time, goggle construction needed additional development, which wasn’t made because of World War 2.

Tank Driver Wearing Dudka

Tank Driver Wearing Dudka

Research and development continued after WWII.

 

IR_Goggles
Upgraded, early after-war version of IR goggles (IKN-8) for T-34 tank crew

Read the whole story in English or the original Russian.

 

Retrospective photo review of Forte VFX1 Virtual Reality system

Forte VFX1 was the most advanced, complex and expensive consumer VR system that appeared on the market during VR craze in mid-nineties. Introduced in 1995, VFX1 was in the shops all around the world in 1996.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
red_blue
vfx1logo
intro1

Hardware overview

System consisted of:

  • Stereoscopic HMD “VFX1 headgear” with built-in 3DOF head-tracker from Honeywell, 45 degree diagonal FOV optics with plastic lenses, 180k resolution LCD screens from Kopin, integrated high-quality stereo headphones from AKG, and microphone;
  • Rugged gyro-joystick “Cyberpuck” with built-in 2DOF tracker and 3 programmable buttons (there was reported that not all VFX1 systems were sold with Cyberpuck);
  • To make this all stuff work – system’s “VIP” card need to be installed into ISA slot of the host PC. VIP card worked in pair with PC’s video-card connected via VESA bus to provide stereoscopic imagery on both screens of the HMD. VIP card also processed all the tracking data, and redirect sound to headphones. It also introduces Access Bus hub.

VFX1 was one on the first VR systems that were sold in former USSR countries. It was very pricy for common consumers here (with starting price in Moscow – 1495 USD), but nevertheless exported VFX1 systems were sold in big quantities. Many years after I was lucky enough to get my hands on such complete exported package, originally sold in Moscow, it have additional Russian manual not included in traditional US version.

Packaging

Let’s take a close look on VFX1 packaging arrangement. VFX1 was packaged in relatively small box (38x33x34 centimeters), with bunch of colorful pictures and a lot of self-advertisement, but its Virtual Reality isn’t it? Here, take a look.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
package_backward
free_cdrom
package_forward
package_inside
package_right
package_top

My box was damaged a little – plastic handle was broken, so for transportation purposes box were glued with scotch tape.

Buy a VR system and get free CD-ROM! Hell yeah, funny today but in 1995 this message had sense.

Package included:

  • VFX1 helmet
  • Detachable strap to helmet adjustments for smaller head sizes
  • Helmet data-cable
  • Cyberpuck (gyroscopic game controller) with Access Bus connector
  • VIP ISA board
  • VESA cable (for video-card attachment)
  • Audio cables with simple jack’s for headphones and microphone
  • Floppy disc with drivers
  • “Free CD-ROM!” with game demos
  • User manuals English and Russian versions

Helmet

VFX1 helmet was somehow bulky but well designed and well balanced; nowadays many VR enthusiasts put modern HMD internals in VFX1 shell for comfortable fit. Personally I prefer modern glasses-like design, but I admit – VFX1 sit’s pretty comfortable on my head.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
helmet_3
helmet_2
helmet_1
helmet_4
helmet_5
helmet_6

VFX1 helmet had “smart visor” that can be opened to allow user to look at the outside world, while not taking off whole helmet. This visor working pretty similar to VPL EyePhone visor which were used in “Lawnmower man” movie.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
helmet_open_1
helmet_open_2
helmet_inside

Visors optics are adjustable, you can change IPD and focal distance for each eye independently. There are no knobs or something to change IPD, you need to gently move oculars along the internal rails manually. Also rubber eyepieces on the oculars are easily detachable.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
ipd_3
focus_1
ipd_2
rubber_eyepiece

Glass optics upgrade was available for additional price, unfortunately nearly impossible to found improved VFX1 oculars today. Insides of the helmet covered with detachable soft foam glued-over with fabric.

Cyberpuck

Is gyroscopic joystick, hold in mid-air, designed to play VR games while standing on foot, absolutely great with Quake. It have 2DOF tracker (Pitch and Roll), and 3 programmable buttons. Pretty neat accessory, too bad it utilizes Access Bus connector and it’s impossible to use it on modern PC’s without being re-wired.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
cyberpuck1
cyberpuck2
cyberpuck3

Other accessories

Among other accessories that can be found in package – is helmet head-strap, 2.5 meters VFX1 data cable, original Forte floppy disk with drivers, and user manuals. VFX1 data cable is actually standard RS-232 26 pin Male-Female cable, which is very flexible. Nowadays it’s very hard to find such cables as spare part, even in specialized cable shops.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
cable
manuals
software

This particular cable marked with Forte logo, and had two warning flags:

“Do not use the VFX1 for more than for 15 minutes at a time (take frequent breaks) make sure the volume is turned down before putting on the VFX1 refer to manual for additional information”

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
flags
jack
jack_logo

Pretty good ad for a 1500 bucks device isn’t it? I suppose this was one of the show stoppers for VFX1, who will spare so much money on the gaming device that you can’t use more than 15 minutes at a time? But, it was good and pretty functional limitation for gaming arcades, where people play for short periods of time.

VIP board and cable connections

As mentioned earlier VIP board need to be connected to ISA slot, provides Access Bus hub, processes tracking data from head tracker and from cyberpuck. Through VESA connector it provides video signal to helmet. Access Bus was actually a predecessor to more useful standard – USB, it also provided possibility to connect many devices through the hubs (and through each-others), make hot connections on already working system (yep, that was a big step forward in RS232 COM era). However Access Bus didn’t stayed long, and I know only one device that uses it – it’s Cyberpuck.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
vip_1
vip_2
vip_3

In my system VIP card is connected via VESA to S3 Trio, it’s the most powerful video-card that provided proper VESA signal, compatible with VFX1. I found mentions from VFX1 users that proper VESA was also on Voodoo Banshee 3D accelerators, but I didn’t have this card and can’t test this.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
vip_4
vip_5
vip_6

Cyberpuck can be connected to VFX1 helmet or directly to VIP card. I prefer HMD connector because it allows playing on foot.

Turning the system on

We examined particular components of VFX1 system, and now let’s connect them together and take a look on the visor’s imagery.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
assembly_1
assembly_2
system

VFX1 works in Windows only in 640 x 480 x 256 colors mode. Actual LCD’s (789×230 color elements) can provide wider range of colors, but utilizing VESA for transferring image to HMD – limit’s it to 256 color palette. But, this palette isn’t fixed, it’s optimized, this means that it holds any color from true-color palette, as long as palette length itself no longer than 256 colors. My VFX1 unit was used frequently in the past, but LCD’s are still bright and colors are vivid.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
desktop
quake1
quake2

I’ve tried to take a few shot’s of what can be seen through VFX1 optics, it is much sharper and with fewer distortions in reality than on these photos. But anyway take a look on the desktop and on a few game-shots from Quake, Descent, and Heretic. These games are my favorites for VFX1, especially Quake1 which gives great immersive feeling even today. By the way VFX1 do not utilize depixelation filters (in contra verse to many professional HMD’s at the time), so black-spacers between pixels are clearly seen.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
descent1
descent2
descent3
heretic1
heretic2
heretic3

For stereoscopy, VFX1 supported two formats of input video – line sequential, and horizontal stereo-pair. While for running VFX1 in stereo-pair mode you need to use proper software, you can set VFX1 to force line sequential mode in windows configuration software, or use command line “VFX1.COM +t” to turn it on in DOS.

NextGen ScrollGallery thumbnail
crysis

Crysis stereoscopic screenshot in line-sequential mode, suitable for viewing through VFX1

Software

VFX1 have drivers compatible with DOS, Windows 95 and Windows 98. I’ve installed VFX1 in Windows 98 SE system, and it works there without issues. After hardware installation, you need to properly configure VFX1 software to make it work. When installing software, you’ve instructed to set IRQ settings according to DIP switches positions on VIP board. You can also check tracking for HMD and Cyberpuck. Personally I’ve liked VFX1 DOS software more for its fancy graphical 3D look, but Windows version of VFX1 configurator work pretty the same.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
software1
software2
software3
software4

One of the features that I liked in VFX1 better than in its “grandson” –VR920, that tracking need to be calibrated only once, software calibrate magnetometers automatically you only need to  choose your geographical region. After calibration – VFX1 tracking worked perfectly for me, and there’s no need in further recalibration.

To make game to support all VFX1 features you need to have proper game patch, in rare cases game have built-in VFX1 support (like Descent, System Shock or ZAR). In all other cases you can use VRMouse – native VFX1 mouse emulator, which emulates mouse and key presses for trackers and buttons of Cyberpuck.

Design benefits

VFX1 had many benefits in its release time. Other consumer VR systems at that time provide fewer features; all of them were without any sort of game-controller that allow you to play standing on foot, sometimes with lack of good head-tracking (like “CyberMaxx”) and stereoscopy support (like “Philips Scuba”). Only “I/O Glasses” had both 2DOF tracker and stereoscopy, but it lacked in game support at the moment of release and had inferior picture quality. Besides VFX1 had biggest FOV among other consumer HMD’s.

Overall VFX1 offered immersive experience and wide support of currently available games at the time. Stylish, comfortable and well balanced HMD design received positive critics and very soon in many countries VFX1 helmet was associated to Virtual Reality itself.

Design flaws

However, VFX1 had list of fatal design flaws caused by its early production – this includes ISA interface VIP board, utilization of VESA which limited it to 256 colors palette, and Access Bus which pretty soon was out of the game in favor to USB.

To overcome some of the flaws, Forte released “Linkbox”, which allow VFX1 connection to regular VGA outputs, but linkboxes were made in very small quantities, and nearly impossible to find nowadays. Also linkbox provided to VFX1 only video signal, without tracking, which make it pretty useless. Rumored full-feature linkbox were never created.

NextGen ScrollGallery thumbnail
linkbox

Linkbox photo by Kevin Mellot

As possible schema to run VFX1 on modern systems – is to use old host PC with VIP card installed, provide video signal to it through video capture card (some old TV tuner), and using Forte VFX1 SDK (which is available) to program VRPN drivers to get tracking info via network.

Instead of conclusion – followers VFX-3D, VR920, and…

After releasing VFX1, Forte was renamed to IIS, and in 1998 they released VFX3D – successor to VFX1. Fully copied external helmet design, VFX3D get rid of ISA VIP card, instead it had control box, with regular VGA connection to PC. Instead of using Access Bus to carry tracking data – VFX3D sent tracking data via COM port, which became obsolete nowadays too. VFX3D doubled the resolution of VFX1 (360k subpixels instead of 180k), had better color reproduction, but had much lesser FOV (35 degree instead of 45 in VFX1) and fixed optics. VFX3D also lacked Cyberpuck, which is on my opinion – a step back. Even with overall better characteristics and compatibility, VFX3D were sold in lesser quantities.

NextGen ScrollGallery thumbnailNextGen ScrollGallery thumbnail
vfx3d
vr920

Years later IIS changed name to Icuiti, and focused on manufacturing compact video-glasses. However they designed a new gaming HMD, which working title was X-Viewer, afterwards changed to VR920. Before releasing VR920 in 2007 company changed its name again to Vuzix.

Vuzix VR920 – almost tripled resolution of VFX3D (now it’s 920k subpixels, which is true 640×480 resolution), and completely changed its visual design to look like slim futuristic glasses which you can put in a pocket. VR920 have built-in 3DOF head-tracker, and can be connected to VGA or DVI with included adaptor. It supports input resolutions up to 1024 x 768, and drives power, audio, microphone, tracker, and stereo sync-signal via USB. VR920 have no control box, which make it pretty possible to use as mobile HMD for small PC’s or Netbooks. Latest software update for VR920 enables all its functions on Windows7 64bit OS.

Currently Vuzix focused on multi-purpose Wrap series of portable video-glasses which lacks head-tracking for VR gaming. Wrap 6DOF head-tracking module is announced but yet not produced by company.

Build Your Own Fluid-based Prismatic Stereoscopic Goggles

For 150 years people have been free-viewing stereoscopic photos (and more recently videos) in a side by side cross-eyed format, where the left view is positioned to the right of the right view. You’re force to cross your eyes like an optical contortionist. For eyeballs with less agility, this can become painful. By using prisms in front of each eye, the eye strain is eliminated. Here’s a truly unique DIY method for building such a viewer on the cheap.

Editor’s note: This article was originally published in Russian by Sergey Velichkin in “Science and Life”, a Russian magazine, and on his webpage. It was updated and translated, with the author’s permission, into English by V-Rtifacts contributor Mnemonic. Many thanks!

Introduction

Fluid-based prismatic stereoscopic goggles it’s full-color no-ghosting stereoscopic goggles tech, that everyone can make in a matter of several hours with use of materials for total cost about $1. No anaglyph or similar principles that can ruin colors, those prismatic goggles are working in other way.

The idea is simple – you know about cross-eyed method of viewing stereo-pictures; the idea of these goggles is to make optical device to view cross-eyed content from monitor, with which you don’t need to strain your eyes, bingo!

It’s working flawlessly on any monitor, even on printed-out pictures.

Construction

To make fluid-based prismatic stereoscopic goggles you will need following materials:

  • Transparent CD box
  • Plastic glue
  • 50g of Glycerol (can be found in drugstore) [we used 85% consistency and no flavor]

If you can’t find glycerol you can use distilled water, but glycerol has a bigger IOR rate and will give better characteristic to goggles.

You will also require following tools:

  • centimeter line (metal one is preferable)
  • knife (to cut plastic, office knife for example)
  • file or emery board (will be used to smoothen corners)
  • syringe (to fill prism with liquid)

Let’s Start!

From bottom-part of CD-box cut detail “A” (you will have needed size for detail automatically if  you will cut from side-to-side), you can cut only a few times, after that plastic can be broken by cut-lines.

Details: “B”, “C”, ‘D” must be made from black plastic of CD-box. Cut two notches in “C” membrane (on the top, and on the bottom) – this must be made to allow liquid and air move from one part of prism to another. Rub glance side of membrane “C” with emery, to make it matt. You will need to glue-in “B” & “D” details by matt side inside prism to minimize mirroring effect.

After you cut all the details – to fit ideally trim them, if needed. You can trim with a file or use your emery board.

When all details are ready, we can glue them together, lets start by glue part “C” to the middle of part “A”, then glue parts “E” & “F”, after this while glue is not dry yet you can fit these details together ideally and glue detail “B” to the bottom.

Give it to dry out totally, don’t let any holes appear, you can mix plastic-chips with glue, to make it denser, and fill all contours with such mix to exclude holes.

When construction dries, you can test it by filling it with cold boiled water. If you see fluid leakage – dry prism, and glue that holes again. After you will be sure that your construction is safe to fill with liquid – glue box top (detail “D”). Be sure to make small holes 3-4 mm diameter in “D” as it shown on picture, before glue it. After glue dry we can fill prism with liquid.

As a liquid for our prism, it’s better to use glycerol (it has better refraction capabilities than water), but if you don’t have glycerol you can use distilled water. To properly fill your prism with glycerol – use syringe, it’s very careful and slow process because glycerol is very dense, but little by little you can fill the prism, try not to make air bubbles, and fill your prism to maximum (some bubbles of air is ok). After you filled the prism, dry out holes and close them with sticky tape, or glue them with another plastic part.

Shutters & Mounting

To improve stereo-image quality, remove left and right mirror images (so only stereoscopic picture will remain visible), you can make shutters (from paper, or not-transparent tape), and fix them on prism with sticky tape as it shown on picture. By the way you can look on this prism from both sides. Size of shutters depends of your monitor, generally – 31 x 35 mm is ok.

How To Use

Just bring prism to your eyes and look at some cross-eyed format stereoscopic content, try to vary different distances to your monitor and choose the best that suited for you.

Other Materials

These goggles also can be made from organic glass (make certain it is shatter-proof), but it will require more sophisticated instruments and techniques! You can vary the size of prisms, but be sure to make 18 degree angle between its front and back surfaces.

Content

Any  cross-eyed stereo pair can be viewed with these goggles.

Here’s some interesting links for pictures:

Good collection of stereoscopic cross-eyed pairs can be found here: http://www.mtbs3d.com/gallery/

Movies:

Various short movies in side-by-side format can be found here:http://www.3dtv.at/Movies/Index_en.aspx

Many stereoscopic movies can be found on Youtube, search “stereo pair” or view this link:http://www.youtube.com/results?search_query=stereo+pair&search_type=&aq=f
Don’t forget to select cross-eyed mode in Youtube options.

Games:

If you have Queke3 by ID Software, you can download this stereoscopic mod to play with stereo-prism: http://games.mirrors.tds.net/pub/planetquake3/modifications/stereoquake.zip
Just unpack it into “baseq3” directory of Quake3 and run the game!
Example of how it looked can be found here: http://www.youtube.com/watch?v=tXvirxRK-Ww

Avatar game can output picture in cross-eyed stereo-pair, to make this: turn on stereo and select “side-by-side” output, also turn on “swap-eyes” option. You can download Avatar game demo here:http://www.gamershell.com/download_53202.shtml

Stereoscopic drivers:

There are two stereoscopic drivers on the market that can output cross-eyed stereo-pairs from DirectX games, they both payware, work in different ways, but both have trial versions, so you can try and choose which driver you liked most.

IZ3D driver: http://www.iz3d.com/driver
DDD TriDef Ignition driver: http://www.tridef.com/ignition/

Back In The USSR

VFX-3D Head Mounted Display

USA and other western world faced consumer-focused Virtual Reality boom in late 80s and early 90s, accurately when USSR is fall apart. VR came to big industrial cities of post USSR later in 1995 – 1998, when VR hype slowly begin to fall down in USA. That was in a few years after IBM-compatible PC’s settled down in Russia, Ukraine and other countries. PC’s are finally moved aside ZX Spectrum platform which was most popular home computer in late eighties and early nineties here.

ELSA Revelator shutter-glasses

Consumer VR started with ELSA Revelator shutter glasses, Forte VFX-1, and i-Glasses HMD’s (which are still can be found from time to time in private geek collections).

These devices had much higher price here than in USA (with more than two-times higher cost), multiply this with poor level of life in after-perestroyka times, and it’s became obvious that only reach geeks were able to buy such stuff for home use, other soviet-born hackers and cyberpunks only dreamed about VR, not to mention other peoples. (more…)